Professor Terry Lyons


Stochastic analysis. This is the area of mathematics relating to the rigorous description of high-dimensional systems that have randomness. It is an area of wide-reaching importance. Virtually all areas of applied mathematics today involve considerations of randomness, and a mobile phone would not work without taking advantage of it. Those who provide fixed-rate mortgages have to take full account of it. My interests are in identifying the fundamental language and the basic results that are required to model the interaction between highly oscillatory systems where the usual calculus is inappropriate. If you google ‘Rough Paths’ and ‘Lyons’ you will find further information. My St Flour Lecture notes provide a straightforward technical introduction with all the details put as simply as possible. A more general introduction can be found in my talk/paper to the European Mathematical Society in Stockholm in 2002.
My approach is that of a pure mathematician, but my research has consequences for numerical methods, finance, sound compression and filtering. At the moment I am (speculatively) exploring their usefulness in understanding sudden shocks on dynamical systems, and also trying to understand the implications for geometric measure theory. The focus of my research directed to ‘Rough paths’ can be viewed as a successful approach to understanding certain types of non-rectifiable currents.
I actively look for applications in the mathematics I do, but my experience has led me to believe strongly in the importance of being rigorous in the development of the core mathematical ideas. For me, the word proof is synonymous with the more palatable ‘precise, convincing and detailed explanation’, and I believe it is important, even essential, to find rigorous proofs of the key mathematical intuitions so that mathematics can reliably grow and ideas can be passed on to the next generation.

Terry Lyons

Contact Professor Lyons: